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Abstract

We examine the origin of neutrino masses and oscillations in the context of
the six-dimensional standard model. The space-time symmetries of this model ex-
plain proton stability and forbid Majorana neutrino masses. The consistency of the
six-dimensional theory requires three right-handed neutrinos, and therefore Dirac
neutrino masses are allowed. We employ the idea that the smallness of these masses
is due to the propagation of the right-handed neutrinos in a seventh, warped di-
mension. We argue that this class of theories is free of gravitational anomalies.
Although an exponential hierarchy arises between the neutrino masses and the elec-
troweak scale, we find that the mass hierarchy among the three neutrino masses is
limited by higher-dimension operators. All current neutrino oscillation data, except
for the LSND result, are naturally accommodated by our model. In the case of
the solar neutrinos, the model leads to the large mixing angle, MSW solution. The
mechanism employed, involving three right-handed neutrinos coupled to a scalar in
an extra dimension, may explain the features of the neutrino spectrum in a more
general class of theories that forbid Majorana masses.
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1 Standard Model in Six Dimensions

The proposal [1] that all the standard model fields access extra spatial dimensions above

some energy scale (“universal extra dimensions”) has received considerable attention dur-

ing the past year. Precision electroweak measurements require only that the compacti-

fication scale of universal extra dimensions be above a few hundred GeV, opening up a

potentially rich set of signatures, both in additional precision measurements [2, 3] and in

collider searches [1, 3, 4].

An especially attractive possibility is that there exist two universal extra dimensions.

The six-dimensional standard model is chiral, and the constraints from Lorentz invariance

and anomaly cancellation have remarkable consequences. The quarks (Q,U ,D) and lep-

tons (L, E) are four-component Weyl fermions of definite chirality, labeled by + and −.

The cancellation of irreducible gauge anomalies imposes one of the following two chiral-

ity assignments consistent with Lorentz invariant Yukawa couplings: Q+,U−,D−,L∓, E±,

where generational indices are implicit [5]. The reducible gauge anomalies can be can-

celed via the Green-Schwarz mechanism as discussed in [6, 5, 7, 8]. Gravitational anomaly

cancellation requires that each generation include a gauge singlet fermion N± with six-

dimensional chirality opposite to that of the lepton doublet [6]. In addition, the six-

dimensional standard model is the only known theory that constrains the number of

fermion generations to be ng = 3 mod 3, based on the global anomaly cancellation condi-

tion [5].

The two universal extra dimensions have to be compactified on an orbifold, so that

each of the six-dimensional chiral fermions gives in the effective four-dimensional theory

either a left- or a right-handed zero-mode fermion. The simplest orbifold compactifications

are either the square T 2/Z2 or T 2/Z4 orbifolds.

An intriguing feature of the six-dimensional standard model is that the combination of

its Lorentz and gauge symmetries can lead to a sufficient conservation of baryon number,

even with the scale of baryon-number violating physics as low as the TeV range [9]. For

the T 2/Z4 orbifold, a Z8 subgroup of the six-dimensional Lorentz symmetry is exactly

preserved. In the case of the square T 2/Z2 orbifold, the same is true provided the two

orbifold fixed points that are exchanged by a 90◦ rotation in the compactified (transverse)

dimensions are physically indistinguishable. The Z8 symmetry requires that the baryon

and lepton numbers, ∆B and ∆L, of any operator in the low-energy four-dimensional
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Lagrangian obey the selection rule1

3∆B + ∆L = 0 mod 8. (1.1)

As a result, the proton is very long lived (all ∆B = 1 transitions are governed by very

high-dimension operators, and are therefore strongly suppressed), while neutron–anti-

neutron oscillations (∆B = 2, ∆L = 0) are forbidden. In the lepton sector, there are no

neutrino Majorana masses2, and more generally neutrino-less double beta decays (∆B =

0, ∆L = 2) are forbidden. The absence of Majorana masses follows from the properties

of the gamma matrices in six dimensions, namely that the charge conjugation operator

does not flip the chirality.

In this paper we study the implications for neutrino physics of the six-dimensional

standard model. The mass matrix for the zero-mode neutrinos is induced dominantly by

the following dimension-seven Yukawa terms in the six-dimensional Lagrangian:

− Li
−λ̂

ii′

NN i′

+ iσ2H∗ + h.c., (1.2)

where i, i′ label the generations, H is the six-dimensional Higgs doublet, and where we

have taken the six-dimensional chirality of L to be −. The ensuing Dirac masses of

the three neutrino flavors can accommodate the neutrino oscillation data and all other

experimental constraints, with the exception of the LSND result [10]. It is nevertheless

difficult to explain why the eigenvalues of the Yukawa matrix λ̂N are extremely small.

Since the standard model in extra dimensions is an effective theory, breaking down at

some scale Ms in the TeV range, it is natural to expect gravity to be strongly coupled there

as well. A structure that accommodates the observed weakness of the gravitational inter-

action should then be added to the universal extra dimensions. The simplest possibilities

are that either some number of additional flat dimensions [11] or one additional warped

dimension [12] are transverse to the universal ones and are not accessible to standard

model fields. Each of these alternatives also provides a possible mechanism for explaining

small but finite Dirac neutrino masses, as first proposed in [13] and [14], respectively, by

letting the gauge singlet fermions propagate in these extra dimension(s).

1The cancellation of anomalies via the Green-Schwarz mechanism requires a (four-dimensional) scalar
field that transforms nontrivially under the Z8. Operators that involve this field can be induced by four-
dimensional instanton effects and could result in a violation of the selection rule Eq. (1.1). We expect
these effects to be negligible. We thank E. Poppitz for discussions on this point.

2The fact that the Z8 symmetry forbids Majorana masses was not taken into account in Ref. [7]. We
note that even if the two universal extra dimensions were compactified on an arbitrary T 2/Z2 orbifold,
an exact Z4 symmetry would still have prevented any Majorana mass.

2



We concentrate here on the possibility that the singlet fermions, along with gravity,

propagate in a single additional (seventh) warped dimension, with the standard model

fields confined to a 5-brane. We adapt and generalize the five-dimensional model of

Ref. [14], and examine its consequences for neutrino masses and mixing angles. In Sec-

tion 2 we present a simple effective theory, involving a single scalar field in the seven-

dimensional bulk, that couples to the N fields. We then discuss, in Section 3, the global

gravitational anomalies in this context and argue that there is no additional constraint

on the number of N fields (contrary to claims made in the literature [14, 15]).

We examine the neutrino zero-modes in Section 4, where we derive their mass matrix

in terms of the wave functions of the N zero-modes at the standard model 5-brane. In

Section 5 we derive the shape of the scalar vacuum expectation value (VEV), and then

find the profiles of the N zero-modes. The effect of the scalar VEV is to concentrate the

N zero-modes near the brane opposite to the standard model one, so that the resultant

four-dimensional neutrino mass matrix is exponentially suppressed relative to the weak

scale. We then show that the mass hierarchy between the different flavors is limited by

the presence of higher-dimension operators, which have a flavor mixing effect. This is an

important result, especially in view of the often stated existence of a large exponential

hierarchy induced between the masses of different flavors, whenever the two chiralities are

localized at separate branes [14, 16].

The implication, discussed in Section 6, is that the ratio between the mass scales as-

sociated with the atmospheric and solar neutrinos is not expected to be larger than one

to two orders of magnitude. Therefore, the large mixing angle MSW solution to the solar

neutrino problem is a consequence of this model. We discuss the neutrino mixing angles,

as well as mass eigenvalues, and show that values compatible with all current neutrino

oscillation data, except for the LSND result, emerge naturally. The energy scales associ-

ated with the seventh dimension, as well as the universal six dimensions, are such that

the singlet-neutrino Kaluza-Klein (KK) modes are too heavy to play a direct role in the

observed neutrino oscillations. Similarly, the constraints from astrophysics [17] or cosmol-

ogy [18] on the mass of the KK neutrinos are not relevant here. In Section 7, we discuss

the relations among various parameters in the model and draw some conclusions about

the expected mass scales that characterize it. In Section 8, we summarize the essential

ingredients of our model leading to a viable neutrino mass spectrum, and emphasize that

the mechanism applies to a more general class of higher-dimensional models.
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2 A Warped Seventh Dimension

The seven-dimensional gauge-singlet fermions are Dirac spinors with eight components,

denoted by N i(xM ), where i = 1, 2, 3 labels the generations. The spacetime coordinates,

xM with M = 0, 1, ..., 6, are labeled as follows: x0, x1, x2, x3 for the ordinary spacetime,

x4, x5 for the two additional universal dimensions, and x6 ≡ z for the dimension inaccessi-

ble to the standard model fields. We use the following conventions: capitalsM,N . . . (from

the middle of the alphabet) denote the seven coordinate indices in a curved background,

while capitals A,B, . . . (from the beginning of the alphabet) denote the corresponding lo-

cal Lorentz indices. We also use lower case greek letters α, µ, . . . to refer to the coordinate

indices, and lower case latin letters, a,m, . . ., to refer to the Lorentz indices along the flat

universal dimensions.

The (T 2/Z4) × (S1/Z2) orbifold compactification projects out the unwanted zero-

modes, and restricts the coordinates to 0 ≤ x4, x5 ≤ πRu and 0 ≤ z ≤ πrc. The

six-dimensional standard model fields are localized at z = πrc, while the gauge-singlet

fields propagate in the whole bulk.

The most general metric consistent with six-dimensional Poincaré invariance is diag-

onal, and warped in the z direction. However, the compactification of the two universal

extra dimensions on the T 2/Z4 orbifold breaks six-dimensional Poincaré invariance, and

in general leads to a warp factor for x4, x5 different from the warp factor for the familiar

uncompactified dimensions. For example, we expect contributions to the stress-energy

tensor, due to the Casimir energy of bulk fields, that do not respect the six-dimensional

Lorentz invariance. However, we will assume for simplicity that these differences can be

neglected.3 Our main conclusions do not change if we allow for the more general possibil-

ity that the warp factors for the uncompactified and compactified universal dimensions

are different. Therefore, we consider a diagonal metric GMN that is warped in the z

direction, corresponding to a line element

ds2 = GMN dx
MdxN

= w2(z)ηµνdx
µdxν − dz2 , (2.1)

where µ, ν = 0, 1, ..., 5, and η = diag(+1,−1, ...,−1) is the six-dimensional Minkowski

3A complete solution that incorporates the gravitational backreaction of Casimir energies or other
effects arising from the compactification of the two universal dimensions would involve the specification
of a radius stabilization mechanism. We leave such a study for future work.
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metric.

Starting in Section 5 we will take the warp factor to have the form [12],

w(z) = ek(πrc−z) , (2.2)

which is a good approximation whenever the dominant contribution to the bulk stress-

energy tensor is due to a bulk cosmological constant. This normalization is chosen so

that w(πrc) = 1, which facilitates the physical interpretation at the standard model

brane, located at z = πrc. In particular, this choice implies that the coordinate radius

Ru is the proper radius of the universal extra dimensions as measured by standard model

probes. For the AdS metric defined by Eqs. (2.1) and (2.2), the Riemann curvature tensor

is Rλρσν = −k2(gσρgλν − gνρgλσ), using the sign conventions of [19].

So far we have introduced three mass parameters: the inverse coordinate radius 1/Ru

of the universal extra dimensions (associated with T 2/Z4), the inverse radius 1/rc of the

dimension accessible only to neutral fields, and k. They are all taken to be below the

fundamental seven-dimensional mass scale M∗, which, as will be discussed in Section 7, is

in the TeV range. We will see in Section 4 that, with the normalization w(πrc) = 1, the

mass scale for the standard model KK modes is set by R−1
u , and thus satisfies the bound

R−1
u ∼> 0.5 TeV, imposed by the electroweak data [1]. The radius rc of the dimension

accessible only to neutral fields is rather loosely constrained by searches for new long-range

forces.

In addition to the N i(xM) fermions and the graviton, other fields that are singlets

under the standard model gauge group could be present in the warped extra dimension.

To describe naturally small neutrino masses it is sufficient to include a single real scalar

ϕ with the dynamics described in the framework of effective field theory. This scalar

is thus an effective degree of freedom, and could well represent a composite structure,

with the compositeness becoming evident at scales of order M∗ and above. The seven-

dimensional (effective) action, invariant under both general coordinate and local Lorentz

transformations, is then given by

∫

d7x
{√

G
[

i

2

(

N i
ΓAeA

MD̂MN i − h.c.
)

+
1

2
GMN∂Mϕ∂Nϕ− Vϕ,N

]

+ δ(z − πrc)
√−gLSM

}

, (2.3)

where the first two terms are kinetic terms in the warped spacetime and the last two terms

describe the bulk interactions of the N and ϕ fields, and the six-dimensional standard
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model. Here eA
M is the inverse vielbein, G is the determinant of the seven-dimensional

metric, with
√
G = w6(z), and g is the determinant of the six-dimensional induced metric,

with
√−g = w6(πrc). The ΓA are the anti-commuting matrices in seven-dimensional

Minkowski space: the gamma matrices of six-dimensional Minkowski space along with

Γ6 = iΓ7, where Γ7 = Γ0...Γ5 defines six-dimensional chirality via N± = 1
2
(1±Γ7)N . The

fermion covariant derivative in Eq. (2.3), associated with the diagonal metric GMN , is

eA
MD̂MN =







w−1(z) [ ∂α + iδa
α ΓaΓ7 (dw/dz)/2 ]N , A = α = 0, 1, ..., 5

∂N /∂z , A = 6 .
(2.4)

The bulk interactions preserve the orbifold Z2 symmetry, defined such that N i
− and ϕ

are odd, while N i
+ are even. They may be organized into a tower of operators of increasing

mass dimension:

Vϕ,N = − Λ − 1

2
M2

ϕϕ
2 +

λϕ

4M3
∗

ϕ4 +

(

hij

M
3/2
∗

ϕ− h̄ij

M
7/2
∗

D̂M∂Mϕ

)

N iN j + ..., (2.5)

where Λ is a bulk cosmological constant that needs to be fine-tuned in order to keep flat

the four dimensional sections. At the classical level this involves tuning Λ against possible

brane tension terms as well as the vacuum energy stored in the ϕ VEV. The parameter

λϕ is real, and h, h̄ are hermitian matrices. All are dimensionless. The mass-square in the

second term of Vϕ,N is chosen to satisfy M2
ϕ > 0, so that ϕ has a nonzero VEV. Both Mϕ

and k are taken to be well below M∗ to justify the use of effective field theory for exploring

the vacuum properties of ϕ. By a flavor transformation it is possible to diagonalize the

first term inside the parenthesis, so that we can use a basis where

hij = hiδij , (2.6)

with hi real and positive. The other terms involving N i are in general flavor non-diagonal.

The six-dimensional standard model Lagrangian, LSM, localized at z = πrc, includes

the kinetic terms for the lepton and Higgs doublets and the Yukawa interactions of N i:

LSM ⊃ iLi
−Γaea

αDαLi
− + gαβDαH†DβH−

(

λij
N

M
3/2
∗

Li
−N j

+iσ2H∗ + h.c.

)

, (2.7)

where the induced (inverse) metric and vielbein at the standard model 5-brane are given

by

gαβ = w−2(πrc) η
αβ ,

ea
α = w−1(πrc) δa

α , α = 0, 1, ..., 5 . (2.8)
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In Eq. (2.7), Dα are the gauge covariant derivatives, and the Yukawa couplings are again

dimensionless. Note that the four-component field L− has mass dimension +5/2 while the

N+ field (also four-component), being defined in seven dimensions, has mass dimension

+3.

Before proceeding with the analysis of the neutrino masses, we discuss the consistency

of the seven-dimensional theory.

3 Gravitational anomalies

We next show that the seven-dimensional model described in the previous section is

anomaly free. The reader interested mostly in neutrino phenomenology may wish to

move directly to Section 4.

The seventh dimension is compactified on a S1/Z2 orbifold and the six-dimensional

standard model is localized on a 5-brane at one of the two fixed points, while the three

singlet neutrino fields propagate in the bulk. It was shown in [5] that if all fields were six-

dimensional, the resulting theory would be free of gauge and gravitational anomalies, both

local and global. Letting the neutrino fields propagate in a seventh dimension amounts

to adding three infinite towers of KK fields to this theory. Since all gauge fields are

localized at the orbifold fixed points, allowing the singlets to propagate in more dimensions

cannot introduce any gauge anomalies. Gravity, however, propagates in the bulk and one

must consider whether all gravitational anomalies cancel. When coupling fermions to

gravity, there can be two types of anomalies: those associated with general coordinate

transformations and those associated with local Lorentz transformations. For each of

these cases one must distinguish between local and global anomalies.4 We analyze first

the case of local gravitational anomalies. After showing that there are none we turn to

the more subtle issue of global gravitational anomalies.

4Note that the word “local” can have two different meanings. In the context of “local Lorentz”
transformations it means that the Lorentz group has been gauged, the standard usage in gauge theories.
There can be, however, local Lorentz transformations that are continuously connected to the identity as
well as local Lorentz transformations that are not. It is customary to refer to the transformations of the
first kind as local and to those of the second kind as global. We use italic fonts whenever we want to
emphasize the distinction between the transformations that are continuously connected to the identity
and those that are not.
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3.1 Local gravitational anomalies

A noninvariance of the effective fermion action under local Lorentz transformations would

imply that the corresponding stress-energy tensor TMN is not symmetric. This would be

incompatible with general covariance and the conservation law ∇MT
MN = 0. Thus, in

the presence of local Lorentz anomalies, either general covariance is broken or TMN is not

conserved. Anomalies associated with general coordinate transformations, on the other

hand, lead directly to ∇MT
MN 6= 0. In either case, the theory that results when gravity

becomes dynamical is inconsistent, and it is necessary to ensure that all gravitational

anomalies cancel. However, the conditions derived from the requirement of anomaly

cancellation for both kinds of transformations are not independent. At least in the case

of local anomalies, it is possible to shift the anomalies of one kind into anomalies of the

other kind by adding suitable local terms to the vacuum functional [20, 21]. Thus, we

may concentrate only on general coordinate transformations.

In the case of gauge theories in three or five dimensions, any local gauge noninvariance,

which is necessarily localized at orbifold boundary points, can always be cancelled by a

bulk Chern-Simons term [22, 23], provided the anomalies in the lower dimensional effective

theory vanish.5 We now argue that this is also the case for local general coordinate

anomalies in seven dimensions.6 We follow the argument given in [23] for the spin-1

case. The idea is to calculate the one-loop contributions to the covariant divergence of

the seven-dimensional stress-energy tensor in the six-dimensional effective theory. If we

regularize in such a way as to produce the covariant form of the anomaly, it is possible to

perform the calculation in any convenient gauge.

For the analysis of anomalies, it is sufficient to consider small fluctuations about a flat

background

ds2 = [ηαβ + hαβ(x, z)] dxαdxβ − dz2 , (3.1)

where hµν ≪ 1. In Eq. (3.1) we took advantage of the gauge freedom7 to set Gµz = 0 and

Gzz = −1. We also choose the vielbein as follows: eaα = (ηaα + 1
2
haα), eaz = ezα = 0 and

5The mathematical relation between Chern-Simons forms in odd dimensions and anomalies in even
dimensions was discussed in [24, 25].

6In five dimensions there are no local gravitational anomalies: the triangle diagrams always vanish.

7The invariance of the line element Eq. (3.1) under the reflection z → −z requires Gαβ and Gzz to
be even, while Gµz should be odd. For consistency, the infinitesimal parameters of a general coordinate
transformation ζα (ζz) should be even (odd). Although these boundary conditions do not allow the zero
mode of Gzz to be gauged away, this “radion” mode has vectorlike couplings in our theory so that it does
not contribute to the anomaly, and we do not include it here.
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ezz = 1. The fact that we take a symmetric vielbein means that the stress-energy tensor

is symmetric. (In this gauge the absence of local Lorentz anomalies is explicit.)

The action for a fermion Ψ in the background Eq. (3.1) becomes

S =
i

2

∫

d7x eΨΓAeA
MD̂MΨ + h.c.

=
∫

d7x
[

iΨΓα∂αΨ +
i

2
ΨΓ6

↔

∂zΨ − hαβT
αβ + O

(

h2
)

]

, (3.2)

where

TMN =
i

4

[

ΨΓ(M
↔

∂N)Ψ − ηMN
(

ΨΓµ
↔

∂µΨ + ΨΓ6
↔

∂ zΨ
)]

, (3.3)

and all components with an index along the seventh dimension vanish. Here we use the

notation Ψ
↔

∂Ψ ≡ Ψ∂Ψ− (∂Ψ)Ψ, and in the second line of Eq. (3.2) as well as in Eq. (3.3)

it is understood that all indices are raised and lowered with the Minkowski metric ηαβ .

We now expand the fermion fields in KK modes:

Ψ±(x, z) =
∑

n

ψ
(n)
± (x)ξ±n (z) , (3.4)

where ψ±(x, z) = 1
2
(1± Γ7)ψ(x, z), with Γ7 = −iΓ6. The KK wavefunctions ξ±n (z), which

can be taken real, are solutions to

∂zξ
±
n = ±mnξ

∓
n , (3.5)

where ξ+
n (z) and ξ−n (z) satisfy Neumann and Dirichlet boundary conditions, respectively,

and are normalized as
∫ πrc

0
dz ξ±n (z)ξ±n′(z) = δnn′ . (3.6)

The result of replacing the mode expansion Eq. (3.4) in the action Eq. (3.2) is

S =
∑

n

∫

d6x

[

ψ
(n)

(iΓα∂α −mn)ψ(n) −
∑

n′

hαβ±
nn′ T

(n,n′)
αβ± + O

(

h2
)

]

, (3.7)

where

T
(n,n′)
αβ± =

1

4

[

i ψ
(n)

± Γ(α

↔

∂ β) ψ
(n′)
± − ηαβ

(

i ψ
(n)

± Γµ
↔

∂µψ
(n′)
± −mnψ

(n)

∓ ψ
(n′)
± −mn′ ψ

(n)

± ψ
(n′)
∓

)]

,

and

hαβ±
nn′ (x) =

∫ πrc

0
dzξ±n (z)ξ±n′(z)hαβ(x, z) . (3.8)

The action Eq. (3.7) corresponds to the six-dimensional theory of an infinite number of

fermion fields that couple (chirally) to background fields hαβ±
nn′ with standard gravitational
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couplings. Note that when hαβ is z-independent, the resulting couplings are vectorlike

(except for those of the zero-mode fermion) due to the normalization condition Eq. (3.6),

which is the same for both chiralities.

One can calculate now the relevant square diagram [26] with one insertion of the

operator Eq. (3.3), with the seven-dimensional fermions replaced by their KK mode ex-

pansions. Performing then the same manipulations as in [23], and adding the contribution

of a brane fermion (in our model these are the electrically neutral component of the Li
−,

while the corresponding bulk fermions, labeled generically in this section by Ψ, are the

N i) to compensate for the zero-mode projected out by the orbifold boundary conditions,

one can finally write

∫

d6xζM∇NT
MN =

1

2
[δ(z − πrc) − δ(z)]

1

4π4

∫ {

1

288
Tr [vζR] Tr

[

R2
]

+
1

360
Tr
[

vζR
3
]

}

.

(3.9)

Here we used a compact differential form notation: Rα
β = 1

2
Rα

βµν dx
µ ∧ dxν , where

Rα
βµν(x, z) is the Riemann tensor calculated from the background Eq. (3.1), but with

the indices running only from 0 to 5. The traces are taken over the indices that are

not saturated by differentials. Also, (vζ)
α
β = ∂βζ

α, where the ζα(x, z) can be thought of

as the infinitesimal parameters of a general coordinate transformation. Due to general

covariance, the result Eq. (3.9) holds in any gauge. In addition, we are allowed to replace

the Riemann tensor in Eq. (3.9) by its exact, nonlinear expression, so that the final result

holds in an arbitrary background.

The covariant anomaly given in Eq. (3.9) does not satisfy the Wess-Zumino consis-

tency conditions and therefore cannot be obtained from the general coordinate variation

of a functional of the metric. There is a standard procedure to obtain the consistent

anomaly by adding local terms to the stress-energy tensor [20]. The resulting anomaly

Q1
6(vζ ,Γ, R)[δ(z−πrc)− δ(z)]/2, where Γα

β = Γα
βµdx

µ is the connection 1-form, is related

to the variation of a 7-form Q7(Γ, R) that can be added to the seven-dimensional action

by

δvζ

∫

Q7(Γ, R) =
∫

dQ1
6(vζ ,Γ, R) . (3.10)

The Chern-Simons secondary characteristic class Q7(Γ, R) involves traces over all seven

dimensional indices.8 However, only the six-dimensional components contribute to the

right hand side of Eq. (3.10) due to the orbifold boundary conditions on the metric and

8Q7(Γ, R) satisfies dQ7(Γ, R) = 1
(2π)4

{

1
288

(

Tr
[

R2
])2

+ 1
360Tr

[

R4
]

}

, where R is the seven-

dimensional Riemann curvature two-form. For a pedagogical exposition see [21].
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on the infinitesimal parameters ζM .

The modified (consistent) form of Eq. (3.9) matches precisely with Eq. (3.10). We note

that Q7(Γ, R) is odd under parity (defined as reflection through the z = 0 hyperplane).

Therefore, if we define the orbifold theory by starting from a compactification on the

circle S1, the coefficient of the Chern–Simons term must change sign when crossing z = 0

(and z = πrc), so that the theory is invariant under the reflection that is used in the

orbifold projection. Due to this discontinuity, the gauge variation of such a term gives

rise to delta-function singularities as in Eq. (3.9). Alternatively, we can think of the

S1/Z2 orbifold as a compactification on an interval (the half circle) with certain boundary

conditions imposed at the end points. In this picture the coefficient of the Chern–Simons

term is constant and the compensating anomaly comes from the boundary contributions.

In either picture, it is clearly possible to cancel the noninvariance of the original fermion

effective action by including the seven-dimensional Chern–Simons form Q7(Γ, R). We

therefore assume that this Chern–Simons term is present so that the vacuum functional

is invariant under local coordinate transformations.

3.2 Global gravitational anomalies

There still remains the question of global general coordinate/local Lorentz transforma-

tions [26, 28]. If there are diffeomorphisms not continuously connected to the identity,

the previous analysis is not enough to ensure that the theory is invariant under such

transformations. We phrase the following analysis in terms of general coordinate trans-

formations, but the same arguments apply for the case of local Lorentz transformations.

If W (G) denotes the fermion determinant in the presence of a background metric G,

we have in general
W (Gρ)

W (G)
= eiδ[ρ] , (3.11)

where Gρ denotes the metric obtained from G under a representative ρ of one of the

disconnected classes of diffeomorphisms, and δ[ρ] is a phase that depends on the class to

which ρ belongs.9 We are specifically interested in the diffeomorphism classes of M =

9We note that the group of disconnected diffeomorphisms of the n-sphere Sn is trivial for n ≤ 5. This
follows from the absence of “exotic” (n+1)-spheres for n+1 ≤ 6 [29]. There are therefore no constraints
on the number of bulk neutrinos in the popular five-dimensional S1/Z2 orbifolds from global anomaly
considerations. For higher dimensional theories the situation is not as straightforward, as indicated by
the fact that there are 28 disconnected components on S6 and two on S7. See [30] for some other higher
dimensional cases.
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S4× (T 2/Z4)× (S1/Z2). The key observation is that S1/Z2 is diffeomorphic to an interval

and any diffeomorphism of M onto M can be continuously deformed into one which is

trivial in the interval S1/Z2:

x′α = fα(x) z′ = z , (3.12)

where xα denote the coordinates in S4 × (T 2/Z4). We can therefore restrict attention

to coordinate transformations of the type (3.12). It is then convenient to perform a KK

decomposition for all fields, including the background metric, and analyze the resulting

six-dimensional theory. Regarding the background, we note that under the limited class

of diffeomorphisms (3.12) the affine connection transforms as

Γ′λ
αβ =

∂x′λ

∂xρ

∂xτ

∂x′α
∂xσ

∂x′β
Γρ

τσ +
∂x′λ

∂xρ

∂2xρ

∂x′α∂x′β
, (3.13)

while all other components transform simply as tensors (the second term in Eq. (3.13)

would vanish if any of the indices α, β, λ were along the seventh dimension parameterized

by z). Furthermore, if we perform a suitable KK mode expansion, only the zero mode of

Γλ
αβ is affected by the second term in Eq. (3.13); all other KK modes are true tensors under

(3.12). (When referring to the gravitational background field, a zero mode is defined to

be independent of the higher-dimensional coordinate.)

We next argue that if there are no global anomalies in a purely zero-mode gravitational

background, then there are no global anomalies even in the presence of the higher gravity

KK modes. The reason for this is that the group of disconnected diffeomorphisms is

finite, at least for the case of the n-sphere Sn [30]. It follows that for any element ρ in

the group there exists a (smallest) integer N such that ρN is the identity element, and

therefore the phase in Eq. (3.11) associated with ρ must be an integer multiple of 2π/N .

If this phase vanishes when the higher gravity KK modes are turned off, and we turn

them on smoothly, the phase must remain zero, unless it changes discontinuously. Since

the higher gravity KK modes are just like background “matter” fields in the appropriate

tensor representation of (3.12), we consider this very unlikely.

Now, in a zero-mode gravity background, the theory in question is just the six-

dimensional standard model with the addition of three infinite towers of massive neutrino

KK modes, which have vectorlike couplings to the background gravity field. We also note

that the Chern–Simons term that is needed to cancel the local anomalies is invariant under

(3.12) when the higher gravity KK modes are turned off. Therefore, the fermion effective

action in a zero-mode gravity background is invariant under general coordinate transfor-

mations. From the argument given in the previous paragraph it follows that there are no
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global anomalies in an arbitrary gravitational background. It is worth pointing out that

in the presence of the higher gravity KK modes, the Chern–Simons term Q7(Γ, R) is not

invariant even under the restricted class of diffeomorphisms (3.12). This noninvariance

must be canceled by the rest of the terms involving the higher gravity KK modes.

We conclude that adding a seventh dimension compactified on S1/Z2 to the six-dimen-

sional standard model and letting the neutrinos propagate in the bulk, introduces neither

local nor global gravitational anomalies. Turning the argument around, we can say that

the consistency constraints on the number of neutrinos in the seven-dimensional model

are the same as in the six-dimensional standard model analyzed in [5], namely it is nec-

essary to include one singlet neutrino per generation. From the point of view of anomaly

cancellation it is immaterial whether these neutrinos are bulk or brane fields.

4 Neutrino Masses

We now return to the action of Eq. (2.3), which leads to Dirac neutrino masses. In order

to study the implications for neutrino oscillations it is sufficient to analyze the zero-mode

spectrum.

The zero modes of N i
− are projected out by the orbifold boundary conditions. The

KK decomposition along the warped dimension that includes the zero-mode N fields is

given by

N i
+(xα, z) =

1√
πrc

∞
∑

n=0

N i(n)
+ (xα)ξn

i (z) , (4.1)

where the index α = 0, 1, ..., 5 labels the universal dimensions. The ξn
i (z) form a complete

set of orthogonal (dimensionless) functions on the [0, πrc] interval, satisfying Neumann

boundary conditions appropriate for even fields. They are chosen to obey the ortho-

normality conditions
1

πrc

∫ πrc

0
dz w5(z)ξn∗

i (z)ξn′

i (z) = δnn′ , (4.2)

which ensure the canonical normalization of the six-dimensional kinetic terms for N i(n)
+ .

We now adopt a warp factor chosen to be unity at the standard model brane, as

in Eq. (2.2). All kinetic terms for the standard model fields are then automatically

canonically normalized. Keeping the zero-modes with respect to the seventh dimension

only, and integrating over z, the six-dimensional effective Lagrangian [see Eq. (2.3)] is

L6D = iLi
−ΓαDαLi

− +DαH†DαH + iN i(0)
+ Γα∂αN i(0)

+

13



−




λij
N ξ0

j (πrc)
√
πrcM

3/2
∗

Li
−N j(0)

+ iσ2H∗ + h.c.



+ ... , (4.3)

where α = 0, 1, ..., 5. Note that we do not need to distinguish between coordinate and

Lorentz indices anymore, and all the indices are raised and lowered with the flat metric

ηαβ. Eq. (4.3) shows that the mass scale for the standard model KK modes is set by the

inverse proper radius 1/Ru [or 1/(w(πrc)Ru) for an arbitrary normalization of the warp

factor.]

Integrating out the universal extra dimensions, the Dirac neutrino mass matrix induced

after electroweak symmetry breaking is

M ij
ν =

λij
N vh

πRuM∗

√
πrcM∗

ξ0
j (πrc) , (4.4)

where vh = 174 GeV is the Higgs VEV, and the denominator represents the square-root

of the volume of the (T 2/Z4) × (S1/Z2) orbifold. As we will see in the next section, the

neutrino mass eigenvalues are largely determined by the hierarchy among the ξ0
j (πrc),

while the mixing angles are determined by the flavor structure of the couplings λij
N and

h̄ij.

5 Zero-mode Profiles of Gauge-Singlet Fermions

In this section we derive the profiles of the neutrino zero modes, which determine the

neutrino mass matrix according to Eq. (4.4). These depend on the VEV of ϕ and therefore

our first task is to determine the solution to the ϕ equation of motion that follows from

the N -independent part of Eqs. (2.3) and (2.5).

5.1 The bulk VEV

We will be interested in a region of parameter space where the ϕ field VEV varies slowly

in the bulk of the 7th dimension (with the exception of two narrow regions close to

the branes), so that to a good approximation it simply gives a contribution to the bulk

cosmological constant. Thus, we use the explicit form for the warp factor, Eq. (2.2).

The negative mass-squared of ϕ implies that a nonzero VEV for ϕ is energetically

favored, but at the same time ϕ is an odd field under the orbifold identification, and

therefore its VEV must satisfy the boundary conditions

〈ϕ(0)〉 = 〈ϕ(πrc)〉 = 0 . (5.1)
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In terms of the rescaled VEV,

f(z) =
〈ϕ(z)〉
M

3/2
∗

, (5.2)

which has mass dimension +1, the equation of motion is

d2f

dz2
− 6k

df

dz
= λϕf

3 −M2
ϕf , (5.3)

subject to the boundary conditions f(0) = f(πrc) = 0. We assume k > 0. In Eq. 5.3

we have neglected possible higher dimension operators. This is justified as long as the

effective field theory description is valid, that is as long as k and Mϕ are well below M∗.

Eq. (5.3) describes the motion of a particle in the potential

V (f) = −λϕ

4
f 4 +

M2
ϕ

2
f 2 , (5.4)

in the presence of an anti -friction term proportional to k. Thus, we are looking for

trajectories in which the particle starts at the bottom of the potential f = 0 with some

initial velocity, climbs the potential up to a certain point and then rolls down back to

f = 0. The anti-friction term puts energy into the system, so it is conceivable that for a

sufficiently large k, no matter how small the initial velocity, the particle will gain enough

energy to overcome the potential barrier; in this case the only solution that satisfies the

boundary conditions is the trivial one f(z) = 0.

We first determine the restrictions in parameter space for nontrivial solutions to exist.

In order to do this it is convenient to set f̃(z) =
√

λϕM
−1
ϕ e−3kzf(z), so that Eq. (5.3)

becomes
d2f̃

dz2
= M2

ϕe
6kzf̃ 3 −

(

M2
ϕ − 9k2

)

f̃ . (5.5)

describing now frictionless motion in a potential whose slope decreases with time. For

k ≥ Mϕ/3, the “motion” starts at z = 0 from the maximum f̃ = 0 of a continuosly

decreasing potential, so that f̃(z) ≡ 0 is the only solution satisfying f̃(πrc) = 0. Therefore,

Eq. (5.5) can have a nontrivial solution which satisfies f̃(0) = f̃(πrc) = 0 only if

k <
Mϕ

3
. (5.6)

This necessary condition is not sufficient for the existence of solutions with f̃(0) =

f̃(πrc) = 0. Another necessary condition can be derived as follows. If we neglect the

first term on the right-hand-side of Eq. (5.5) the fictitious particle feels just a harmonic
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z1 z2
z

f

Figure 1: Scalar profile when Mϕ/k = 10, πrcMϕ = 70. The plateau is at f ≈ Mϕ/
√

λϕ. The
points z1 and z2 define the boundaries between regions I, II and III. In the main text we consider
the case where z1/z2 ≪ 1.

oscillator potential and returns to the origin after a “time” z = π(M2
ϕ − 9k2)−1/2. The ef-

fect of the neglected term is always to increase the oscillation period. Hence, the boundary

condition f̃(πrc) = 0 requires
1

r2
c

< M2
ϕ − 9k2 . (5.7)

In the Appendix we prove that the conditions (5.6) and (5.7) are also sufficient for the

existence of nontrivial solutions. We conclude that the VEV 〈ϕ(z)〉 is non-zero in the

interval 0 < z < πrc for a substantial range of values of Mϕ and k.

For the special case of a flat and large z-dimension, k ≪ 1/(πrc) ≪ Mϕ, the solution

is given approximately by [31]

f(z) ≈ Mϕ
√

λϕ

tanh
Mϕz√

2
tanh

Mϕ(πrc − z)√
2

[

1 + O
(

k

Mϕ

)

+ O
(

e−πrcMϕ

)

]

. (5.8)

This solution is essentially constant except in the region of size ∼ M−1
ϕ around the end-

points. We will in general be interested in the parameter range in which k is not negligible,

but where 1/(πrc) ≪ Mϕ. The latter hierarchy will need to be only one to two orders of

magnitude to explain the smallness of the neutrino masses relative to the weak scale. As

we show in the Appendix, the solutions in this case are qualitatively similar to the flat

case k = 0. We show a typical numerical solution in Fig. 1.
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5.2 Bulk fermions

In the presence of the ϕ VEV, the N fields have non-trivial profiles along the z dimension.

The three N zero-modes defined in Eq. (4.1) are a solution to the set of equations (i, j =

1, 2, 3, with i fixed and j summed over):

dξ0
i

dz
=

(

3kδij − hiδijf − h̄ij

M2
∗

f ′′

)

ξ0
j , (5.9)

where we have again neglected possible higher dimension operators in Eq. (2.5). We also

set f ′′ = d2f/dz2 where f was defined in Eq. (5.2). It will be useful to factor out the

leading order solution in powers of Mϕ/M∗, namely the solution in the absence of the last

term in Eq. (5.9), by defining new functions ci(z) through

ξ0
i (z) = ci(z)e

3kz−hiS(z) , (5.10)

where

S(z) ≡
∫ z

0
dζ f(ζ) . (5.11)

The ci’s satisfy the following differential equations

dci
dz

= − h̄ij

M2
∗

f ′′e(hi−hj)S(z)cj , (5.12)

which we now solve in the limit πrcMϕ ≫ 1.

Given the general features of the f profile discussed in the previous subsection, it is

convenient to separate the analysis in the three regions shown in Fig. 1. We first note

that in region II, f ′′ is exponentially small and therefore all the ci’s remain essentially

constant throughout it. The differential equations (5.12) are nontrivial in regions I and

III. In region I the integral Eq. (5.11) is of order λ−1/2
ϕ . In region III this integral is much

larger, so that the important features of the ci(z) are determined in this region as follows:

for z2 < z < πrc the integral expression for S(z), Eq. (5.11), can be replaced, to a good

approximation, by S(πrc), which is itself of order λ−1/2
ϕ πrcMϕ. Therefore, in this region

there will be an exponential hierarchy among the various terms on the right-hand-side of

Eqs. (5.12), provided hiλ
−1/2
ϕ πrcMϕ ≫ 1. Without loss of generality we can assume the

ordering h1 > h2 > h3 > 0. If we keep only the leading terms, then Eqs. (5.12) in region

III reduce to

dc3
dz

≃ − h̄33

M2
∗

f ′′ c3 (5.13)

dci
dz

≃ − h̄i3

M2
∗

f ′′e(hi−h3)S(πrc) c3 for i = 1, 2 . (5.14)
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We first solve for ξ0
3 . It will be sufficient to work to zero-th order in Mϕ/M∗, so that

from Eq. (5.13) we have c3(z) = const. Imposing the normalization condition Eq. (4.2),

and in the limit 1/(πrc) ≪ k < Mϕ/3, where we can evaluate S(z) by setting f(z) =

Mϕ/
√

λϕ throughout the region of integration, we find from Eq. (5.10) that

ξ0
3(πrc) ≃

√

πrc

(

2M̃ϕ − k
)

e−πrc(M̃ϕ−k/2) , (5.15)

where only one combination of the parameters in the Lagrangian for ϕ appears,

M̃ϕ ≡ h3Mϕ
√

λϕ

. (5.16)

We will see in the next section that the expression Eq. (5.15) will lead to exponential

suppression of neutrino masses provided only that M̃ϕ > k/2.

Näıvely, one might think that for the other two generations there will be a greater

exponential suppression controlled by their larger Yukawa couplings h1,2. We now show

that this is not the case, due to the presence of the higher dimension operators that couple

N 1,2 to N 3 in Eq. (2.5). To see this we need to solve for c1,2(z) in region III to first order

in M2
ϕ/M

2
∗ . By using the zero-th order solution for c3(z) ≃ c3(πrc) in Eq. (5.14) we obtain

ci(z) ≃ ci(z2) − c3(πrc)
h̄i3

M2
∗

e(hi−h3)S(πrc) [f ′(z) − f ′(z2)] , for i = 1, 2, (5.17)

from which we find

ξ0
i (πrc)

ξ0
3(πrc)

≃ ci(z2)

c3(πrc)
e−(hi−h3)S(πrc) − h̄i3

M2
∗

[f ′(πrc) − f ′(z2)] . (5.18)

But the first term here is exponentially small compared to the second term. Furthermore,

f ′(z2) is exponentially small compared to f ′(πrc) and we finally obtain

ξ0
i (πrc)

ξ0
3(πrc)

≃ − h̄i3

M2
∗

f ′(πrc) . (5.19)

Because f(z) varies from O(λ−1/2
ϕ Mϕ) to zero over a distance of order 1/Mϕ, it follows

that −f ′(πrc) = O(λ−1/2
ϕ M2

ϕ). This provides the promised result. The zero-mode wave

functions ξ0
1,2(πrc) are suppressed compared to ξ0

3(πrc), but only by a quantity

ǫ ≡ −f
′(πrc)

M2
∗

∼ O




M2
ϕ

√

λϕM2
∗



 . (5.20)
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We note that in Eq. (5.18) the leading term in 1/M∗ is exponentially suppressed while

the subleading term is not, so that it dominates as long as h̄i3 is not extremely small

compared with unity. The reader might wonder whether this signals a breakdown in the

effective theory description, which relies on the convergence of the expansion in 1/M∗.

There is no reason to worry: the term suppressed by M∗ in Eq. (5.18) comes actually from

the leading flavor off-diagonal operator. All other terms suppressed by higher powers of

M∗ give just small corrections to ǫ.

6 Neutrino Oscillations

We are now equipped with all the tools necessary for analyzing the neutrino mass spectrum

and the ensuing neutrino oscillations.

6.1 Neutrino mass matrix

As we discussed in the introduction (Section 1), the neutrino masses are of the Dirac

type, the Majorana masses being forbidden by the symmetry under rotations of the two

universal extra dimensions. Below the electroweak scale, the effective four-dimensional

theory contains three left-handed neutrinos, νi
L, which are the neutral zero-modes of Li

−,

and three right-handed neutrinos, N i
R, which are the zero-modes of N i(0)

+ with respect to

the two universal dimensions. In the weak eigenstate basis,

ν̄LMνNR + h.c. , (6.1)

the neutrino mass matrix derived in Eqs. (4.4), (5.15) and (5.19) is given by

Mν = m0















ǫ h̄13λ
11
N ǫ h̄23λ

12
N λ13

N

ǫ h̄13λ
21
N ǫ h̄23λ

22
N λ23

N

ǫ h̄13λ
31
N ǫ h̄23λ

32
N λ33

N















, (6.2)

where ǫ≪ 1 is defined in Eq. (5.20), and the scale of the neutrino masses is set by

m0 ≡ vhe
−πrc(M̃ϕ−k/2)

(

1

πRuM∗

)

(

2M̃ϕ − k

M∗

)1/2

. (6.3)

As we will see in Section 7, the factors in parenthesis are expected to provide a suppression

of no more than one to two orders of magnitude, so that the neutrino mass scale is

explained by the first exponential.
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The neutrino mass matrix is diagonalized by unitary transformations:

U †
LMνUR = diag (mν1 , mν2 , mν3) . (6.4)

The unitary matrix describing neutrino oscillations, UL, and the physical neutrino masses,

mνi
, may be found by expanding in powers of ǫ = O(λ−1/2

ϕ M2
ϕ/M

2
∗ ). The largest physical

neutrino squared-mass is

m2
ν3

= m2
0

(

∣

∣

∣λ13
N

∣

∣

∣

2
+
∣

∣

∣λ23
N

∣

∣

∣

2
+
∣

∣

∣λ33
N

∣

∣

∣

2
)

[

1 + O(ǫ2)
]

. (6.5)

It is convenient to use the following identity, valid up to corrections of order ǫ2:

Mν =

















l̃3 −(l23 l̃1)
∗ l13

0
√

|l13|2 + |l33|2 l23

−l̃1 −(l23 l̃3)
∗ l33































ǫ m̃11 ǫ m̃12 0

ǫ m̃21 ǫ m̃22 0

0 0 mν3





























1 0 −ǫθ1

0 1 −ǫθ2

ǫθ1 ǫθ2 1















, (6.6)

where we use the following notation:

lij =
λij
N

(

|λ13
N |2 + |λ23

N |2 + |λ33
N |2

)1/2
, i, j = 1, 2, 3 ,

l̃i =
λi3
N

∗

(

|λ13
N |2 + |λ33

N |2
)1/2

, i = 1, 3 ,

θi = h̄i3

3
∑

j=1

l∗jil
∗
j3 , i = 1, 2 . (6.7)

The first matrix that appears in Eq. (6.6) can be shown to be unitary, while the last

matrix is unitary to leading order in ǫ2. The elements of the block-diagonal mass matrix

shown in Eq. (6.6) are given by

m̃1i = mν3 h̄i3

(

l1il̃
∗
3 − l3il̃

∗
1

)

,

m̃2i = mν3 h̄i3

[

l̃1 (l13l2i − l23l1i) + l̃3 (l33l2i − l23l3i)
]

, i = 1, 2 . (6.8)

Eq. (6.6) shows that the mν1 and mν2 physical neutrino masses are of order ǫmν3 ,

and generically are non-degenerate. We choose mν1 < mν2 . These can be computed

straightforwardly by diagonalizing m̃ (the 2×2 matrix whose elements are given by m̃ij):

ǫ2m̃m̃† = V diag
(

m2
ν1
, m2

ν2

)

V † , (6.9)
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where V is a unitary 2 × 2 matrix. Its Vij elements depend only on ratios of λij
N ’s and

on |h̄13/h̄23|. This dependence can be computed straightforwardly using Eq. (6.8), but is

cumbersome and we do not display it here.

The unitary 3 × 3 matrix UL is then given by the product of the first matrix on the

right-hand-side of Eq. (6.6) with




V 0

0 1



 . (6.10)

The third column entries of UL,

U i3
L =

λi3
N [1 + O(ǫ2)]

(

|λ13
N |2 + |λ23

N |2 + |λ33
N |2

)1/2
, i = 1, 2 . (6.11)

are relevant for atmospheric neutrino oscillations, as discussed below. The first two

columns of UL have entries that also depend (to leading order in ǫ) only on ratios of

λij
N ’s and on |h̄13/h̄23|. The ratio of the U11

L and U12
L entries, which is relevant for solar

neutrino oscillations, is given by
∣

∣

∣

∣

∣

U12
L

U11
L

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

V21 l̃
∗
3 − V11 l̃1l23

V ∗
11 l̃

∗
3 − V ∗

21 l̃1l23

∣

∣

∣

∣

∣

(6.12)

This ratio is typically of order unity if most of the λij
N ’s have the same order of magnitude.

In particular, this is true for the phenomenologically favored case discussed below, which

is near the bi-maximal mixing of three neutrinos [32].

6.2 Predictions and experimental constraints

The neutrino oscillation data constrains the differences of neutrino squared-masses. With

three neutrinos, the atmospheric and solar neutrino data can be fit nicely (the LSND data

cannot be accomodated).

The atmospheric neutrino data require a larger mass splitting compared to the solar

data so that m2
ν3

is determined to leading order in ǫ2. The range for the mass-square

difference (∆m2)atm given by the global fit [33] to the data obtained in atmospheric

neutrino experiments and in the CHOOZ reactor experiment is

m2
ν3

≈ (∆m2)exp
atm = 1.5 − 6.0 × 10−3 eV2 at 99% CL . (6.13)

As long as the combination of Yukawa couplings shown in Eq. (6.5) is not smaller than

unity by many orders of magnitude, Eq. (6.3) requires

πrc

(

M̃ϕ − k

2

)

≈ 30 , (6.14)
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where we anticipate that the terms in parenthesis in Eq. (6.3) are of order unity.

The solar neutrino oscillations are controlled by the mass-square difference of the

lighter neutrinos:

(∆m2)solar = m2
ν2
−m2

ν1
. (6.15)

Based on the reasonable assumptions that |h̄23|, |h̄23| = O(1), and that most Yukawa

couplings λij
N have the same order of magnitude, we find the following prediction for the

solar neutrino oscillation scale:

(∆m2)solar

(∆m2)exp
atm

≈ O
(

ǫ2
)

, (6.16)

where ǫ is given by Eq. (5.20). In the absence of fine-tuning, the ϕ scalar mass-squared

can be no smaller than the one-loop contribution in the seven-dimensional theory: δM2
ϕ ∼

O[λϕM
2
∗ /(128π3)]. Also, we expect that the effective theory description starts breaking

down when Mϕ approaches M∗. This leads to an allowed range for ǫ [see Eq. (5.20)]:

O
(

10−3
√

λϕ

)

∼< ǫ ∼< O
(

10−1/
√

λϕ

)

, (6.17)

with the values near the upper end being preferred if the mass parameter Mϕ is not too

much smaller than the fundamental scale M∗. If λϕ is of order unity, the ratio shown in

Eq. (6.16) is then of order 10−2. The generic prediction of our model for the solar neutrino

scale then becomes

(∆m2)solar ≈ 10−5 − 10−4 eV2 . (6.18)

This prediction fits well the range currently allowed for the large-mixing angle MSW

solution to the solar neutrino problem [34]. The large uncertainties due to the unknown

values of various parameters do not allow us to rule out the long oscillation wavelength

solution, whose fit to the data prefers (∆m2)solar ≈ 10−7 eV2. On the other hand, the

vacuum oscillation solution requires (∆m2)solar ≈ 10−10 eV2, so that it is disfavored within

our model.

The elements of the unitary matrix UL are constrained by the solar, atmospheric and

reactor neutrino experiments. The element U13
L is most tightly constrained by the global

fit to the CHOOZ and solar neutrino data, which gives (U13
L )2 < 6.5 × 10−2 at 99% CL

[35]. Applied to our case, this translates into a mild restriction:

|λ13
N |

√

|λ23
N |2 + |λ33

N |2
< 0.26 . (6.19)
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The atmospheric neutrino data strongly favors pure νµ ↔ ντ oscillations with a mixing

angle satisfying sin2 2θ23 > 0.83 at the 99% confidence level [36]. The expression of this

mixing angle in terms of the Yukawa couplings is the same in our model as in the five-

dimensional model of Grossman and Neubert [14], and gives:

0.65 <

∣

∣

∣

∣

∣

λ23
N

λ33
N

∣

∣

∣

∣

∣

< 1.55 , (6.20)

This is not a particularly strong constraint, given that the Yukawa couplings are typically

expected to be of the same order of magnitude. However, if the march of the atmospheric

neutrino data towards maximal νµ ↔ ντ mixing continues, then it will be necessary to

find a more detailed explanation for why the ratio of Yukawa couplings shown above is so

close to unity.

Finally, the global fits of the large mixing angle MSW solution to the solar neutrino

problem require [34]

0.2 <

∣

∣

∣

∣

∣

U12
L

U11
L

∣

∣

∣

∣

∣

2

∼< 1 . (6.21)

This constraint is naturally accomodated by order unity values of the parameters entering

the first two columns of the matrix shown in Eq. (6.12).

In summary, we can explain the hierarchy between the electroweak scale and the scale

relevant for the atmospheric neutrino data by the first exponential factor in Eq. (6.3).

We can further explain the small hierarchy between this scale and the solar neutrino

scale associated with the large-mixing angle MSW solution based on the typical size

of the higher-dimension operators controlling neutrino flavor mixing. Furthermore, the

currently allowed ranges for the mixing angles are natural if the various couplings of our

model are of order unity.

7 Mass Parameters and Warping

Having observed that the smallness of the neutrino mass scale relative to the electroweak

scale is explained by Eq. (6.3) with the exponent given by Eq. (6.14), we now comment on

the other mass scales of the model. These are the scale M∗ at which the seven-dimensional

theory, including its six-dimensional component, breaks down, the parameter k related to

the seven-dimensional cosmological constant, the size Ru of the universal extra dimensions,

and the size rc of the warped dimension. We also introduced the mass Mϕ of the bulk

scalar that localizes the neutrino fields away from the standard model brane, and the
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Higgs mass parameter MH . These scales give rise to other, derived scales such as the

electroweak scale vh.

There are several important relations among the above parameters. We assume a

normalization of the warp factor as in Eq. (2.2). (For a different normalization it is only

necessary to interpret Ru in the following formulas as the proper radius of the universal

extra dimensions at the standard model brane.) The first relation follows from the fact

that the observed standard model gauge couplings, collectively denoted by g4, (as well as

the top Yukawa coupling) are of order one. Writing a typical six-dimensional standard

model gauge coupling in LSM of Eq. (2.3) as g6/M∗, where g6 is dimensionless, the observed

four-dimensional gauge coupling is given by

1 ∼ g4 = (πRuM∗)
−1g6 . (7.22)

If the standard model gauge interactions become strong at the scale M∗, then g2
6 ∼ 128π3

[37]. In this case, the product RuM∗ is of order
√

128π. For a range of values of g6 > 1, M∗

will be somewhat above 1/Ru, providing a finite range of validity for the six-dimensional

standard model. In the following we assume that O(1) < RuM∗ ∼< O(10).10

A second relation follows from naturalness considerations with respect to the Higgs

mass. The Higgs mass parameter MH must be below M∗ for the effective theory descrip-

tion to be valid. However, on naturality grounds, MH cannot be much smaller than the

one loop corrections. They can be roughly estimated by cutting off the quartically diver-

gent one-loop integrals, such as the one arising from the quartic Higgs self-interaction, at

the breakdown scale of the effective, six-dimensional theory. This yields

M∗ > MH ∼> δMH ≈
√

λ6

128π3
M∗ , (7.23)

where λ6 is a dimensionless coupling in the six-dimensional theory. Using this estimate,

it follows that the Higgs VEV is given by

vh =
[

πRuM∗λ
−1/2
6

]

MH ∼>
1√

128π
(RuM∗)

2R−1
u . (7.24)

10An interpretation based on the AdS/CFT correspondence [38] may be useful if RuM∗ < 1, in which
case the present six-dimensional description is not applicable. We note that the Z8 symmetry that lies at
the heart of the remarkable proton decay suppression pointed out in [9] and which also forbids Majorana
masses, is expected to remain valid. Thus, even though it would not be possible to talk about a six-
dimensional standard model, the six-dimensional structure still has observable effects in the low-energy
four dimensional theory.
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IfRuM∗ ∼> O(1) then Eq. (7.24) can be read as an upper bound on 1/Ru in the TeV range.

But the electroweak precision measurements impose a lower bound 1/Ru ∼> 0.5 TeV [1].

It then follows from RuM∗ ∼< O(10) that M∗ is in the TeV range.

Finally we note that the parameters Mϕ and k are expected to satisfy relations anal-

ogous to Eq. (7.23) (though, as noted in subsection 5.1, we must have k < Mϕ/3). Our

discussion of the solar and atmospheric neutrino data in subsection 6.1 indicated that

Mϕ must be approximately an order of magnitude below M∗, which is consistent with a

naturality estimate analogous to Eq. (7.23), if the corresponding coupling λϕ is of order

unity or smaller.

There are now various possibilities depending on how large the warping is. First

suppose that the warping is no more than mild: eπrck ∼ 1. In this case, the weakness of

gravity must be attributed to some suppression that lies beyond the seven-dimensional

theory presented here, such as a few other flat dimensions accessible only to gravity along

the lines of [11]. It is important to note that the mechanism for suppressing the neutrino

masses presented here is independent of any such extension. From Eq. (6.14), we now

have πrcM̃ϕ ≈ 30. With M̃ϕ roughly an order of magnitude below M∗, the inverse size of

the seventh dimension, 1/πrc, is of order 10 GeV.

A more interesting possibility is that πkrc ≫ 1. In this case it is possible to explain the

weakness of gravity à la Randall and Sundrum [12] within the seven-dimensional model.

There are, however, some differences arising from the existence of the universal extra

dimensions. The four-dimensional Planck mass is now related to M∗ by

M2
Pl ≈

M5
∗ (πRu)

2

4k
e4πrck . (7.25)

Suppose that k is on the order of (but somewhat less than) M∗. Then if 1/Ru and M∗ are

in the TeV range as expected from the previous considerations,11 it follows from Eq. (7.25)

that e2πrck ∼ 1015, which translates into πkrc ∼ 20. (Note that there is an extra factor

of two in the exponent compared to the five-dimensional Randall-Sundrum model.) We

then see from Eq. (6.14) that πM̃ϕrc ∼ 40, and the inverse size of the seventh dimension,

1/πrc, is again of order 10 GeV. The lightest spin-2 KK mode with momentum along the

11Note that we have chosen to measure all mass scales at the standard model brane with respect to
the corresponding induced metric. Had we measured them with respect to a metric rescaled by eπkrc as
in Ref. [12], we would have concluded that M∗ and the other “fundamental” parameters of the seven
dimensional theory are of order MP . The cutoff on the effective six dimensional standard model would,
however, remain in the TeV range, being given by M∗e

−πkrc . None of the physical conclusions described
here would change.
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warped dimension has a mass of about 4k, which is roughly of the same order as the mass

of the first KK modes of the standard model fields. It will be interesting to see which KK

modes will be discovered first if this model is realized in nature.

8 Conclusions

We have presented a higher-dimensional mechanism for generating a realistic neutrino

mass spectrum. The smallness of the neutrino masses compared with the electroweak scale

is explained by an exponential suppression of the right-handed neutrino wave functions

on the standard-model brane. The hierarchy between the mass scales associated with the

νµ ↔ ντ and νe ↔ νµ transitions, measured by the atmospheric and solar neutrino data,

respectively, is limited by the effect of flavor-non-diagonal, higher-dimension operators.

As a result, the mass scale of the solar neutrino oscillations fits well the large-mixing-

angle MSW solution. Furthermore, the neutrino mixing angles are naturally large if no

large hierarchies between the neutrino Yukawa couplings occur. This is an important

result in view of the fact that a majority of the models in the literature (for a recent

review see [39]) can accomodate only the small-mixing-angle MSW or vacuum solutions

to the solar neutrino problem, which are less favored by the data. In addition, the

seemingly “maximal” mixing required by the atmosperic neutrino data is consistent with

our mechanism for a reasonably large range of parameters.

While our mechanism has been developed in the framework of the six-dimensional

standard model, it is worth pointing out that it relies fundamentally on four ingredients

that could naturally be present in a more general class of higher-dimensional theories:

(i) Three right-handed neutrinos;

(ii) A symmetry structure forbidding Majorana neutrino masses;

(iii) A spatial dimension compactified on S1/Z2 and accessible to the right-handed neu-

trinos but not to the standard model fields;

(iv) A bulk (effective) scalar field which is odd under the Z2 orbifold transformation, has

a VEV, and couples to the right-handed neutrinos.

Ingredients (i) and (ii) are automatically present in the six-dimensional standard

model, as required by the six-dimensional gravitational anomaly cancellation [5, 6] and

the Z8 rotational symmetry of the two universal extra dimensions [9]. We were then led to

consider the six-dimensional standard model localized in a seventh dimension satisfying

(iii) and (iv).

26



More generally, ingredient (ii) could be enforced by lepton number conservation in a

variety of models, and its experimental test is the absence of neutrino-less double-beta

decay. Ingredients (iii) and (iv) could be present in 4+1 dimensional models, as suggested

in Ref. [31] as a possible source of fermion mass hierarchies. We have generalized this

construction by allowing a warped metric. We have analyzed the conjectured restriction

on the number of gauge-singlet fermions [14], and have found that in 6+1 dimensions

the local and global gravitational anomalies cancel independently of the number of right-

handed neutrinos, provided the fermion content is free of six-dimensional anomalies. (In

4+1 dimensions no restrictions arise because there are no local or global gravitational

anomalies in four or five dimensions.)

Finally, it is worth noting that the model presented here has another intriguing feature.

In the most appealing version of the model, the extra dimension that leads to an expo-

nential suppression of the right-handed neutrino wave functions also solves the hierarchy

problem along the lines of Randall and Sundrum [12], while explaining proton stability

based on six-dimensional Lorentz invariance as in Ref. [9]. In this case collider searches

at the TeV scale will reveal graviton Kaluza-Klein modes in addition to the Kaluza-Klein

modes of the standard model fields.
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Appendix

In this Appendix we prove that the real scalar ϕ has a nonzero VEV whenever the

parameters k, Mϕ and rc satisfy the conditions (5.6) and (5.7). The rescaled VEV u(z) =
√

λϕM
−1
ϕ f(z) must satisfy the z–independent equation

d2u

dz2
= 6k

du

dz
+M2

ϕ

(

u3 − u
)

. (A.1)

This equation describes the mechanical motion in the potential −M2
ϕ(u2 − 1)2/4, and in

the presence of an anti–friction term proportional to k. The z coordinate plays the role

of “time” variable.
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We will prove the existence of a solution to (A.1), satisfying the boundary conditions

u(0) = u(πrc) = 0, by analyzing the “flows” in the equivalent first order system:

du

dz
= Pu ,

dPu

dz
= 6kPu +M2

ϕ

(

u3 − u
)

. (A.2)

In the (u, Pu) plane, the solution sought corresponds to a flow that starts somewhere on

the u = 0 line and, after time πrc, comes back to this line (because of the symmetry

u → −u, we can restrict u ≥ 0.) More precisely, we shall prove that for any k < Mϕ/3,

there are flows starting and ending on the u = 0 line, with total elapsed times (πrc)

ranging from π/ω to infinity, where

ω ≡
√

M2
ϕ − 9k2 . (A.3)

The system (A.2) has two fixed points, (u, Pu) = (0, 0) and (1, 0), near which it may be

linearized. In the vicinity of (0, 0), Eqs. (A.2) has the following explicit solution satisfying

the initial conditions (u, Pu) = (0, P0 > 0):

u(z) =
P0

ω
e3kz sinωz ,

Pu(z) = u(z)
(

3k + ω tan−1 ωz
)

. (A.4)

Since u vanishes at z = π/ω, the existence of solutions is established for a separation

between the branes of πrc → π/ω [see Eq. (5.7)], at least when P0 → 0 such that the

linear approximation is reliable.

A similar linear analysis around (1, 0) shows that there is an attractive flow that

approaches the fixed point (1, 0) from the region u < 1, Pu > 0, and a repulsive flow in

the region u < 1, Pu < 0. For either one of them, the total time is infinite. This shows

that adjacent flows that come arbitrarily close to (1, 0) will spend an arbitrarily long time

in its vicinity. Note that whenever the flow enters the region u < 1, Pu < 0, it will be

driven to the u = 0 line, since the only possibility is to roll down the slope of the potential.

We now prove the possibility of reaching these flows from a point (0, Pu > 0), based on

the following remarks. First, Eq. (A.2) shows that along the line Pu = 0, and for u < 1,

the trajectories flow vertically downward (see Fig.2). Second, the trajectories passing

through the u = 1 line flow into the region u > 1 whenever Pu > 0, and then they are

driven to u → ∞ due to the negative slope of the potential. Tracing these trajectories
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Figure 2: The flow diagram when Mϕ/3k = 4.

back in time, it follows from the first remark that they necessarilly cross the u = 0,

Pu ≥ 0 half-line. However, they cannot cross the origin because the flows cannot stop

except at fixed points, and the point (0,0) cannot be reached [for small enough Pu > 0

the trajectories stay only in the vicinity of (0, 0), see Eqs. (A.4)]. Note that the flows

cannot cross due to the uniqueness of the solutions to ordinary differential equations such

as Eq. (A.2). Third, tracing back in time the trajectory attracted to the fixed point (1, 0),

the same argument as above shows that it crosses the line u = 0, Pu > 0. This “critical”

trajectory, which starts at some critical (0, Pc > 0) and is attracted to (1, 0), sets a

boundary between qualitatively different flows. Finally, from any point (u, 0), u < 1, the

trajectory traced back in time crosses the line u = 0 at some 0 < Pu < Pc. Thus, a point

(u, 0) with u arbitrarily close to 1 corresponds to a trajectory that spends an arbitrarily

long time in the vicinity of (1, 0).

We have shown so far that there are solutions for πrc close to either π/ω or infinity.

By continuity, it follows that there are solutions to Eq. (A.1), satisfying the boundary

conditions u(0) = u(πrc) = 0, for any rc > 1/ω. This completes the proof that Eqs. (5.6)

and (5.7) are necessary and sufficient conditions for the existence of a nonzero ϕ VEV.
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